Example: Another SmallSignal Analysis of a MOSFET Amplifier

Let's determine the small-signal voltage gain $A=v_{o} / v_{i}$ (note not the open-circuit gain!) of the following amplifier:

Step 1: DC Analysis

Capacitors are open circuits at $D C$, therefore the $D C$ circuit is:

We ASSUME the MOSFET is in saturation, thus we ENFORCE:

$$
I_{D}=K\left(V_{G S}-V_{+}\right)^{2}
$$

Since $I_{G}=0$, we find that $V_{G}=V_{0}$, and thus $V_{G S}=V_{D S}$. From KVL, we find:
$10.0-(1) I_{D}-V_{D S}-(2) I_{D}=0$

Or since $V_{G S}=V_{D S}$:

$$
V_{G S}=10.0-3 I_{D}
$$

Combining this with $I_{D}=K\left(V_{G S}-V_{t}\right)^{2}$, we get a quadratic equation of $V_{G S}$:

$$
V_{G S}=10.0-3 K\left(V_{G S}-V_{t}\right)^{2}
$$

The solutions to this equation are:

$$
V_{G S}=4.2 \mathrm{~V} \text { and } V_{G S}=-1.0 \mathrm{~V}
$$

Don't panic! Only one of these solutions satisfy our saturation assumption: $V_{G S}=4.2>2.0=V_{+}$.

Step 2: Determine Small-Signal Parameters

$$
\begin{aligned}
g_{m} & =2 K\left(V_{G S}-V_{+}\right) \\
& =2(0.4)(4.2-2.0) \\
& =1.76 \mathrm{~mA} / \mathrm{V} \\
r_{0} & =\frac{1}{\lambda K\left(V_{G S}-V_{+}\right)^{2}} \\
& =\frac{1}{0.005(0.4)(4.2-2.0)^{2}} \\
& =103 \mathrm{~K} \Omega
\end{aligned}
$$

Steps 3 and 4: Determine the small-signal circuit
a) Turn off the $D C$ voltage source.
b) Replace the large capacitors with short circuits.

c) Replace the MOSFET with its small-signal model.

We find first that $v_{g s}=v_{i}$. We likewise see from KCL that current i_{1} is:

$$
\begin{aligned}
i_{1} & =1.76 v_{g s}+\frac{v_{o}}{1}+\frac{v_{o}}{3}+\frac{v_{o}}{103} \\
& =1.76 v_{i}+1.334 v_{o}
\end{aligned}
$$

From Ohm's Law, we likewise find that i_{1} is:

$$
i_{1}=\frac{v_{i}-v_{o}}{100}
$$

Combining these two equations, we find:

$$
v_{i}-v_{o}=176 v_{i}+133.4 v_{o}
$$

And from this we find that the small-signal voltage gain is:

$$
A=\frac{v_{o}}{v_{i}}=\frac{-175}{134.4}=-1.31 \text { not much gain! }
$$

